# Vibration analysis of bimodulus laminated cylindrical panels 

K. Khan, B.P. Patel ${ }^{*}$, Y. Nath<br>Department of Applied Mechanics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India

Received 12 July 2008; received in revised form 24 August 2008; accepted 11 September 2008
Handling Editor: J. Lam
Available online 23 October 2008


#### Abstract

This paper deals with the flexural vibration behavior of bimodular laminated composite cylindrical panels with various boundary conditions. The formulation is based on first order shear deformation theory and Bert's constitutive model. The governing equations are derived using finite element method and Lagrange's equation of motion. An iterative eigenvalue approach is employed to obtain the positive and negative half cycle free vibration frequencies and corresponding mode shapes. A detailed parametric study is carried out to study the influences of thickness ratio, aspect ratio, lamination scheme, edge conditions and bimodularity ratio on the free vibration characteristics of bimodulus angle- and cross-ply composite laminated cylindrical panels. It is interesting to observe that there is a significant difference between the frequencies of positive and negative half cycles depending on the panel parameters. Through the thickness distribution of modal stresses for positive half cycle is significantly different from that for negative half cycle unlike unimodular case wherein the stresses at a particular location in negative half cycle would be of same magnitude but of opposite sign of those corresponding to positive half cycle. Finally, the effect of bimodularity on the steady state response versus forcing frequency relation is studied for a typical case.


(C) 2008 Elsevier Ltd. All rights reserved.

## 1. Introduction

Generally, the composite structures are analyzed considering material as unimodular i.e. material properties are assumed to be same in tension and compression. But there are certain fiber reinforced composites which exhibit different properties in tension and compression. Their actual stress-strain relation is often approximated by two straight lines with a slope discontinuity at origin (Refer Fig. 1). Most commonly used composites exhibiting bimodularity are: unidirectional glass/epoxy composites with compression moduli $20 \%$ smaller than the tension moduli, boron/epoxy laminates having compression moduli about 15-20\% greater than the tension moduli and graphite/epoxy laminates with tension moduli up to $40 \%$ greater than the compression moduli [1,2]. Analysis of structures made of such materials based on bimodular approach is more appropriate. The fiber direction strain governed symmetric compliance bimodulus material model proposed by Bert [3] is commonly employed.

[^0]

Fig. 1. Approximation of actual stress-strain behavior with bilinear model.

Few studies [4-9] have been carried out on the dynamic analysis of bimodular material laminated plates/ shells. The free vibration analysis of two-layered cross-ply bimodulus composite simply supported thick rectangular plates has been carried out by Bert et al. [4]. The effect of pure bending and extensional prestresses on the free flexural vibration frequencies of simply supported thick bimodulus orthotropic plates has been studied by Doong and Chen [5]. The vibration and buckling analyses of simply supported orthotropic and two-layered cross-ply rectangular plates of bimodular material have been carried out using finite element approach based on higher order shear deformation theory by Doong and Fung [6]. The free flexural vibration analysis of bimodular laminated angle-ply plates has been carried out using finite element approach based on higher order shear deformation theory [7]. The dynamic stability analysis of bimodular isotropic rectangular plate subjected to periodic in-plane load has been carried out using finite element method based on first order shear deformation theory by Jzeng et al. [8]. The free vibration study of two-layered cross-ply simply supported cylindrical panels of bimodulus material has been carried out by Bert and Kumar [9]. The above cited studies are specific to mostly isotropic/orthotropic/two-layered cross-ply laminated bimodular plates/ panels with all edges simply supported.

To the best of the authors' knowledge, the effect of different support conditions and number of layers on the vibration characteristics of cross- and angle-ply laminated cylindrical panels of bimodulus material is not dealt in the open literature.

In this paper, the vibration analysis of cross- and angle-ply bimodular material laminated cylindrical panels with various edge conditions (all edges simply supported (SSSS), all edges clamped (CCCC), straight edges simply supported and curved edges clamped (SCSC), straight edges clamped and curved edges simply supported (CSCS)) is carried out using finite element method. The effect of aspect ratio, ply-angle, number of layers (all the layers are of equal thickness) and bimodularity ratios ( $E_{2 t} / E_{2 c}$ ) on the free vibration characteristics of cylindrical panels is investigated. The non-dimensional positive and negative half cycle frequencies and modal stress distributions are presented. The effect of bimodularity on the steady state response versus forcing frequency relation is shown for a typical case.

## 2. Constitutive model

Based on the fiber direction strain governed model, the constitutive relation of a bimodulus laminated material can be written as [4]:

$$
\left\{\sigma^{k}\right\}=\left\{\begin{array}{c}
\sigma_{s s}^{k}  \tag{1}\\
\sigma_{\theta \theta}^{k} \\
\tau_{s \theta}^{k} \\
\tau_{s z}^{k} \\
\tau_{\theta z}^{k}
\end{array}\right\}=\left[\begin{array}{ccccc}
\bar{Q}_{11 k l} & \bar{Q}_{12 k l} & \bar{Q}_{16 k l} & 0 & 0 \\
\bar{Q}_{12 k l} & \bar{Q}_{22 k l} & \bar{Q}_{26 k l} & 0 & 0 \\
\bar{Q}_{16 k l} & \bar{Q}_{26 k l} & \bar{Q}_{66 k l} & 0 & 0 \\
0 & 0 & 0 & \bar{Q}_{44 k l} & \bar{Q}_{45 k l} \\
0 & 0 & 0 & \bar{Q}_{45 k l} & \bar{Q}_{55 k l}
\end{array}\right]\left\{\begin{array}{c}
\varepsilon_{s s} \\
\varepsilon_{\theta \theta} \\
\gamma_{s \theta} \\
\gamma_{s z} \\
\gamma_{\theta z}
\end{array}\right\}=\left[\bar{Q}_{i k l}\right]\{\varepsilon\}
$$

where $\bar{Q}_{i j k l}$ are transformed stiffness coefficients and $k$ is layer number, $l=1$ denotes the properties associated with fiber direction tension and $l=2$ denotes the properties associated with fiber direction compression.

## 3. Governing equations

A bimodular material laminated composite cylindrical panel is considered as shown in Fig. 2 with total thickness $h$, radius $r$, meridional length $L$ and circumferential length $b$. The displacements $u, v$ and $w$ at a point $(s, \theta, z)$ from the median surface are expressed as functions of middle surface displacements $u_{0}, v_{0}, w_{0}$ and independent rotations $\beta_{s}$ and $\beta_{\theta}$ of the meridional and hoop sections, respectively, as:

$$
\begin{gather*}
u(s, \theta, z, t)=u_{0}(s, \theta, t)+z \beta_{s}(s, \theta, t) \\
v(s, \theta, z, t)=v_{0}(s, \theta, t)+z \beta_{\theta}(s, \theta, t)  \tag{2}\\
w(s, \theta, z, t)=w_{0}(s, \theta, t)
\end{gather*}
$$

The strain vector can be written as:

$$
\{\varepsilon\}=\left\{\begin{array}{c}
\varepsilon_{s s}  \tag{3}\\
\varepsilon_{\theta \theta} \\
\gamma_{s \theta} \\
\gamma_{s z} \\
\gamma_{\theta z}
\end{array}\right\}=\left\{\begin{array}{c}
\varepsilon_{p} \\
0
\end{array}\right\}+\left\{\begin{array}{c}
z \varepsilon_{b} \\
\varepsilon_{s}
\end{array}\right\}
$$

The vectors $\left\{\varepsilon_{p}\right\},\left\{\varepsilon_{b}\right\}$ and $\left\{\varepsilon_{s}\right\}$ represent mid-surface membrane, bending and transverse shear strains, respectively, and are defined as [10]:

$$
\left\{\varepsilon_{p}\right\}=\left\{\begin{array}{c}
\frac{\partial u_{0}}{\partial s}  \tag{4}\\
\frac{\partial v_{0}}{r \partial \theta}+\frac{w_{0}}{r} \\
\frac{\partial u_{0}}{r \partial \theta}+\frac{\partial v_{0}}{\partial s}
\end{array}\right\}, \quad\left\{\varepsilon_{b}\right\}=\left\{\begin{array}{c}
\frac{\partial \beta_{s}}{\partial s} \\
\frac{\partial \beta_{\theta}}{r \partial \theta} \\
\frac{\partial \beta_{s}}{r \partial \theta}+\frac{\partial \beta_{\theta}}{\partial s}
\end{array}\right\}, \quad\left\{\varepsilon_{s}\right\}=\left\{\begin{array}{c}
\beta_{s}+\frac{\partial w_{0}}{\partial s} \\
\beta_{\theta}+\frac{\partial w_{0}}{r \partial \theta}-\frac{v_{0}}{r}
\end{array}\right\}
$$

The kinetic energy of the shell is expressed as:

$$
\begin{equation*}
T(\delta)=\frac{1}{2} \iint\left[\sum_{k=1}^{N} \int_{h_{k}}^{h_{k+1}} \rho_{k}\left\{\dot{u}_{k} \dot{v}_{k} \dot{w}_{k}\right\}\left\{\dot{u}_{k} \dot{v}_{k} \dot{w}_{k}\right\}^{\mathrm{T}} \mathrm{~d} z\right] r \mathrm{~d} s \mathrm{~d} \theta \tag{5}
\end{equation*}
$$

where $\rho_{k}$ is the mass density of the $k$ th layer, $h_{k}, h_{k+1}$ are the $z$-coordinates of the bottom and top surfaces of the $k$ th layer and $\{\delta\}=\left\{\delta_{1}, \delta_{2}, \ldots \ldots \ldots, \delta_{n}\right\}$ is the vector of degrees of freedom.

Using Eq. (2), Eq. (5) can be rewritten as:

$$
\begin{equation*}
T(\delta)=\frac{1}{2} \iint\left[\sum_{k=1}^{N} \int_{h_{k}}^{h_{k+1}} \rho_{k}\left\{\dot{d}^{e}\right\}^{\mathrm{T}}[Z]^{\mathrm{T}}[Z]\left\{\dot{d}^{e}\right\} \mathrm{d} z\right] r \mathrm{~d} s \mathrm{~d} \theta \tag{6}
\end{equation*}
$$



Fig. 2. Geometry and coordinate system of cylindrical panel.
where

$$
\left\{\dot{d}^{e}\right\}^{\mathrm{T}}=\left\{\dot{u}_{0} \dot{v}_{0} \dot{w}_{0} \dot{\beta}_{s} \dot{\beta}_{\theta}\right\} \quad \text { and } \quad[Z]=\left[\begin{array}{ccccc}
1 & 0 & 0 & z & 0 \\
0 & 1 & 0 & 0 & z \\
0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

The potential energy of the shell is given by:

$$
\begin{equation*}
U(\delta)=\frac{1}{2} \iint\left[\sum_{k=1}^{N} \int_{h_{k}}^{h_{k+1}}\{\sigma\}^{\mathrm{T}}\{\varepsilon\} \mathrm{d} z\right] r \mathrm{~d} s \mathrm{~d} \theta-\iint q w_{0} r \mathrm{~d} s \mathrm{~d} \theta \tag{7}
\end{equation*}
$$

where $q$ is distributed force.
Using Eq. (1), Eq. (7) can be rewritten as:

$$
\begin{equation*}
U(\delta)=\frac{1}{2} \iint\left[\sum_{k=1}^{N} \int_{h_{k}}^{h_{k+1}}\{\varepsilon\}^{\mathrm{T}}\left[\bar{Q}_{i j k l}\right]\{\varepsilon\} \mathrm{d} z\right] r \mathrm{~d} s \mathrm{~d} \theta-\iint q w_{0} r \mathrm{~d} s \mathrm{~d} \theta \tag{8}
\end{equation*}
$$

Analysis is carried out using a $C^{0}$ eight-noded serendipity quadrilateral shear flexible shell element with 5 degrees of freedom ( $u_{0}, v_{0}, w_{0}, \beta_{s}, \beta_{\theta}$ ) developed based on the field consistency approach [11]. The field variables are expressed in terms of nodal values using shape functions as:

$$
\begin{equation*}
\left(u_{0}, v_{0}, w_{0}, \beta_{s}, \beta_{\theta}\right)=\sum_{i=1}^{8} N_{i}^{0}\left(u_{0 i}, v_{0 i}, w_{0 i}, \beta_{s i}, \beta_{\theta i}\right) \tag{9}
\end{equation*}
$$

where $N_{i}{ }^{0}$ are the original shape functions for the eight-noded quadratic serendipity element. If the shape functions for an eight-noded element are used directly to interpolate the five field variables ( $u_{0}, v_{0,} w_{0}, \beta_{s}, \beta_{\theta}$ ) in deriving the transverse shear strains for very thin shell, the element will lock and show oscillations in the transverse shear stresses. Field consistency requires that the transverse shear strains must be interpolated in a consistent manner [11]. This is achieved here by smoothing the original shape functions by least-square method to the desired form, i.e. the functions that are consistent with the derivative functions ( $N_{i, s}^{0}$ or $N_{i, \theta}^{0}$ ). The smoothened shape function $N^{1}{ }_{s i}$ and $N^{1}{ }_{\theta i}$ consistent with derivative functions $w_{0, s}$ and $w_{0, \theta}$ are required for the interpolation of $\beta_{s}$ and $\beta_{\theta}$ to be substituted in the expressions for the transverse shear strain components. Using the smoothed shape functions, the constrained transverse shear strain components are expressed as:

$$
\begin{gather*}
\left(\beta_{s}+w_{0, s}\right)=\sum_{i=1}^{8}\left(N_{s i}^{1} \beta_{s i}+N_{i, s}^{0} w_{0 i}\right)  \tag{10}\\
\left(\beta_{\theta}+\frac{1}{r} w_{0, \theta}-\frac{v_{0}}{r}\right)=\sum_{i=1}^{8}\left(N_{\theta i}^{1} \beta_{\theta i}+\frac{1}{r} N_{i, \theta}^{0} w_{0 i}-\frac{N_{\theta i}^{1}}{r} v_{0 i}\right) \tag{11}
\end{gather*}
$$

The other strains are expressed in terms of original shape function $\left(N_{i}^{0}\right)$ and their derivatives.
The governing equations of motion, considering dissipative forces, can be written as:

$$
\begin{equation*}
[M]\{\ddot{\delta}\}+[C]\{\dot{\delta}\}+[K]\{\delta\}=\{F\} \tag{12}
\end{equation*}
$$

where $[M],[K]$ and $[C]$ are global mass, stiffness and damping matrices and $\{F\}$ is consistent global load vector. Neglecting the dissipative forces and load vector and assuming solution $\{\delta\}=\{\bar{\delta}\} \mathrm{e}^{i \omega t}$ for free vibration analysis, Eq. (12) becomes:

$$
\begin{equation*}
[K]\{\bar{\delta}\}=\omega^{2}[M]\{\bar{\delta}\} \tag{13}
\end{equation*}
$$

Free vibration frequencies and corresponding modal vectors are extracted using Lanczos eigenvalue extraction technique. Forced response analysis is carried out by integrating Eq. (12) using Newmark's direct time integration scheme.

## 4. Iterative eigenvalue approach

For the analysis of bimodular material laminated shells, it is necessary to determine the proper combination of material properties and strain in the fiber direction $\left(\varepsilon_{11}\right)$. To start the iteration, all the layers are assigned tensile properties and eigenvalue problem (Eq. 13) is solved.

Then for the normalized mode shape of interest (number of half waves $m$ along $s$-direction and $n$ along $\theta$-direction), the location of neutral surface is determined using the zero fiber direction strain condition for each layer. If the neutral surface is located inside a layer instead of at the interface between the two layers or outside the layer, the layer is split into two sub-layers. Then the tensile or compressive material properties are assigned to each layer depending upon the sign of the fiber direction strain $\left(\varepsilon_{11}\right)$. Using the assigned properties, eigenvalue problem is solved. Again the mode shape of interest $(m, n)$ is used to locate the neutral surface location for each layer. This process is repeated till frequencies and normalized mode shape from two consecutive iterations converge to a specified tolerance limit of $0.001 \%$.


Fig. 3. Free vibration response during two portions of vibration cycle of a panel.

Table 1
(a) Comparison of non-dimensional frequencies $\left(\Omega_{1}, \Omega_{2}\right)$ for different aspect $(L / b)$ ratio of two-layered cross-ply $\left(0^{\circ} / 90^{\circ}\right)$ bimodular simply supported plate $\left(b / h=10\right.$, Material 1) and (b) comparison of non-dimensional frequency $\left(\Omega_{1}\right)$ for different aspect $(L / b)$ and thickness $(r / h)$ ratios of two-layered cross-ply bimodular simply supported cylindrical panel ( $b / h=10$, Material 1 )

| (a) |  |  |  |  |  |  |  | $\Omega_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $L / b$ |  | Ref. [4] | Present |  | Ref. [4] |  | Present |  |
| 0.5 |  | 19.380 |  |  | 13. |  | 13.8 |  |
| 0.7 |  | 11.600 |  |  |  |  | 9.3 |  |
| 1.0 |  | 7.038 |  |  |  |  | 7.0 |  |
| 1.4 |  | 4.838 |  |  |  |  | 6.0 |  |
| 2.0 |  | 3.712 |  |  |  |  | 5.5 |  |
| (b) |  |  |  |  |  |  |  |  |
| $L / b$ | $\left(90^{\circ} / 0^{\circ}\right)$ |  |  |  | $\left(0^{\circ} / 90^{\circ}\right)$ |  |  |  |
|  | $r / h=10$ |  | $r / h=50$ |  | $r / h=10$ |  | $r / h=50$ |  |
|  | Ref. [9] | Present |
| 0.5 | 21.0200 | 22.0815 | 19.0463 | 19.4943 | 17.1875 | 17.4429 | 14.0244 | 14.2788 |
| 0.7 | 14.2052 | 14.3418 | 11.6098 | 11.8907 | 11.9665 | 12.0867 | 9.7942 | 9.7063 |
| 1.0 | 9.3674 | 9.3866 | 7.3443 | 7.3545 | 8.5365 | 8.6509 | 7.3932 | 7.2443 |
| 1.4 | 6.5556 | 6.5727 | 5.0287 | 5.0935 | 6.5167 | 6.6841 | 5.9070 | 6.1063 |
| 2.0 | 4.6281 | 4.7474 | 3.9409 | 3.8721 | 5.3353 | 5.4417 | 5.4115 | 5.5148 |



Iteration $1, \Omega_{1}=14.2075$


Iteration $5, \Omega_{1}=19.6520$


Iteration $12, \Omega_{1}=19.4858$



Iteration $2, \Omega_{1}=29.2247$



Iteration $13, \Omega_{1}=19.4858$

Fig. 4. Convergence study for mode shape and fiber direction strain distribution through the thickness for positive half cycle of twolayered angle-ply $\left(15^{\circ} /-15^{\circ}\right)$ CSCS panel $(r / h=50, b / h=10, L / b=0.5$, Material 1).

## 5. Results and discussion

Based on progressive mesh refinement, $10 \times 10$ mesh is found to be adequate to model the full panels. The material properties considered in the analysis are [9,12]:

Material 1 (Aramid-rubber):
Tension: $E_{1 t}=3.58 \mathrm{GPa}, E_{2 t}=E_{3 t}=0.00909 \mathrm{GPa}, G_{12 t}=G_{13 t}=0.0037 \mathrm{GPa}, G_{23 t}=0.0029 \mathrm{GPa}$, $v_{12 t}=v_{23 t}=v_{13 t}=0.416$.


Iteration $7, \Omega_{1}=11.6223$




Fig. 5. Convergence study for mode shape and fiber direction strain distribution through the thickness for negative half cycle of eightlayered angle-ply $\left(45^{\circ} /-45^{\circ}\right)_{4} \operatorname{SSSS}$ panel $(r / h=100, b / h=10, L / b=1$, Material 1).

Compression: $E_{1 c}=E_{2 c}=E_{3 c}=0.012 \mathrm{GPa}, G_{12 c}=G_{13 c}=0.0037 \mathrm{GPa}, G_{23 c}=0.00499 \mathrm{GPa}, v_{12 c}=v_{23 \mathrm{c}}=$ $v_{13 c}=0.205$.
Material 2:
Tension: $E_{1 t} / E_{2 t}=25, E_{2 t}=E_{3 t}, G_{12 t} / E_{2 t}=G_{13 t} / E_{2 t}=0.5, G_{23 t} / E_{2 t}=0.2, v_{12 t}=v_{23 t}=v_{13 t}=0.25$.

Table 2
Non-dimensional positive and negative half cycle frequencies of angle-ply $(\theta /-\theta)_{N / 2}$ bimodular laminated SSSS cylindrical panels (b/h=10, Material 1)

| $L / b$ | $\theta$ | $N$ | $r / h=20$ |  |  | $r / h=50$ |  |  | $r / h=100$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\Omega_{1}$ | $\Omega_{2}$ | \% diff | $\Omega_{1}$ | $\Omega_{2}$ | \% diff | $\Omega_{1}$ | $\Omega_{2}$ | \% diff |
| 0.5 | $15^{\circ}$ | 2 | 19.1102 | 18.6069 | 2.63 | 18.6728 | 18.4740 | 1.06 | 18.5819 | 18.4826 | 0.53 |
|  |  | 4 | 19.2201 | 18.7908 | 2.23 | 18.7731 | 18.6082 | 0.87 | 18.6837 | 18.6036 | 0.42 |
|  |  | 8 | 19.3742 | 19.1716 | 1.04 | 19.0025 | 18.9327 | 0.36 | 18.9408 | 18.9063 | 0.18 |
|  | $30^{\circ}$ | 2 | 20.1072 | 18.9250 | 5.87 | 19.3887 | 18.9088 | 2.47 | 19.2154 | 18.9758 | 1.24 |
|  |  | 4 | 20.4650 | 19.4657 | 4.88 | 19.7806 | 19.3741 | 2.05 | 19.6238 | 19.4212 | 1.03 |
|  |  | 8 | 21.1839 | 20.3992 | 3.70 | 20.5981 | 20.2800 | 1.54 | 20.4677 | 20.3103 | 0.76 |
|  | $45^{\circ}$ | 2 | 22.5739 | 19.0776 | 15.48 | 20.9869 | 19.5543 | 6.82 | 20.5485 | 19.8330 | 3.48 |
|  |  | 4 | 23.6771 | 19.8664 | 16.09 | 22.0080 | 20.4349 | 7.14 | 21.5357 | 20.7496 | 3.65 |
|  |  | 8 | 24.5064 | 20.9264 | 14.60 | 22.9256 | 21.4803 | 6.30 | 22.4907 | 21.7666 | 3.21 |
| 0.7 | $15^{\circ}$ | 2 | 12.3571 | 11.2829 | 8.69 | 11.6604 | 11.2363 | 3.63 | 11.4993 | 11.2878 | 1.83 |
|  |  | 4 | 12.5731 | 11.4927 | 8.59 | 11.8143 | 11.3867 | 3.61 | 11.6429 | 11.4296 | 1.83 |
|  |  | 8 | 12.6917 | 11.8135 | 6.91 | 12.0245 | 11.6794 | 2.87 | 11.8798 | 11.7069 | 1.45 |
|  | $30^{\circ}$ | 2 | 14.0295 | 12.0606 | 14.03 | 12.9128 | 12.1043 | 6.26 | 12.6333 | 12.2268 | 3.21 |
|  |  | 4 | 14.4914 | 12.6049 | 13.01 | 13.3587 | 12.5934 | 5.72 | 13.0844 | 12.6986 | 2.94 |
|  |  | 8 | 14.9778 | 13.3102 | 11.13 | 13.9798 | 13.3004 | 4.85 | 13.7359 | 13.3949 | 2.48 |
|  | $45^{\circ}$ | 2 | 17.8537 | 12.7877 | 28.37 | 15.3032 | 13.1788 | 13.88 | 14.6109 | 13.5383 | 7.34 |
|  |  | 4 | 19.0957 | 13.4503 | 29.56 | 16.4957 | 14.1083 | 14.47 | 15.7597 | 14.5540 | 7.65 |
|  |  | 8 | 19.3657 | 14.3494 | 25.90 | 17.1992 | 15.0020 | 12.77 | 16.5123 | 15.4095 | 6.67 |
| 1.0 | $15^{\circ}$ | 2 | 8.5777 | 6.9934 | 18.47 | 7.6679 | 7.0377 | 8.21 | 7.4464 | 7.1309 | 4.23 |
|  |  | 4 | 8.9168 | 7.1831 | 19.44 | 7.8970 | 7.2046 | 8.76 | 7.6453 | 7.3000 | 4.51 |
|  |  | 8 | 9.0002 | 7.4240 | 17.51 | 8.0661 | 7.4528 | 7.60 | 7.8444 | 7.5399 | 3.88 |
|  | $30^{\circ}$ | 2 | 10.9645 | 7.9980 | 27.05 | 9.3733 | 8.1543 | 13.00 | 8.9602 | 8.3480 | 6.83 |
|  |  | 4 | 11.5599 | 8.3831 | 27.48 | 9.8985 | 8.5818 | 13.30 | 9.4580 | 8.7956 | 7.00 |
|  |  | 8 | 11.8291 | 8.8626 | 25.07 | 10.2948 | 9.1047 | 11.56 | 9.9024 | 9.3076 | 6.00 |
|  | $45^{\circ}$ | 2 | 18.6919 | 8.9042 | 52.36 | 13.2380 | 9.3740 | 29.18 | 11.8448 | 9.9265 | 16.19 |
|  |  | 4 | 19.6641 | 9.4242 | 52.07 | 14.1924 | 10.3515 | 27.06 | 12.8838 | 11.0228 | 14.44 |
|  |  | 8 | 19.9468 | 10.1529 | 49.10 | 14.4914 | 11.0602 | 23.67 | 13.2523 | 11.6255 | 12.27 |
| 1.4 | $15^{\circ}$ | 2 | 6.7078 | 4.9366 | 26.40 | 5.7416 | 5.0545 | 11.96 | 5.5054 | 5.1648 | 6.18 |
|  |  | 4 | 7.0678 | 5.0793 | 28.13 | 6.0049 | 5.2102 | 13.23 | 5.7306 | 5.3340 | 6.92 |
|  |  | 8 | 7.1331 | 5.2471 | 26.44 | 6.1220 | 5.4025 | 11.75 | 5.8754 | 5.5198 | 6.05 |
|  | $30^{\circ}$ | 2 | 10.0938 | 5.9064 | 41.48 | 7.9092 | 6.2214 | 21.33 | 7.3376 | 6.4889 | 11.56 |
|  |  | 4 | 10.8980 | 6.1501 | 43.56 | 8.6303 | 6.6569 | 22.86 | 8.0068 | 7.0093 | 12.45 |
|  |  | 8 | 11.1461 | 6.5104 | 41.59 | 8.8838 | 7.0695 | 20.42 | 8.2994 | 7.3961 | 10.88 |
|  | $45^{\circ}$ | 2 | 9.0613 | 6.6882 | 26.18 | 8.1446 | 7.0948 | 12.88 | 7.8479 | 7.3136 | 6.80 |
|  |  | 4 | 9.8482 | 7.1512 | 27.38 | 8.9591 | 7.7704 | 13.26 | 8.6469 | 8.0444 | 6.96 |
|  |  | 8 | 10.2216 | 7.7390 | 24.28 | 9.4392 | 8.3627 | 11.40 | 9.1624 | 8.6147 | 5.97 |
| 2.0 | $15^{\circ}$ | 2 |  |  |  |  |  |  | 4.4360 | 4.1307 |  |
|  |  | 4 | 5.8457 | 3.9659 | 32.15 | 4.8873 | 4.1534 | 15.01 | 4.6409 | 4.2740 | 7.90 |
|  |  | 8 | 5.8932 | 4.0772 | 30.81 | 4.9485 | 4.2821 | 13.46 | 4.7232 | 4.3964 | 6.91 |
|  | $30^{\circ}$ | 2 | 8.7661 | 4.6651 | 46.78 | 6.9499 | 5.1979 | 25.20 | 6.4109 | 5.5247 | 13.82 |
|  |  | 4 | 9.5683 | 4.9284 | 48.49 | 7.7931 | 5.8038 | 25.52 | 7.2360 | 6.2291 | 13.91 |
|  |  | 8 | 9.7993 | 5.2585 | 46.33 | 8.0496 | 6.1420 | 23.69 | 7.5146 | 6.5513 | 12.81 |
|  | $45^{\circ}$ | 2 | 6.1176 | 5.4469 | 10.96 | 6.0054 | 5.7370 | 4.46 | 5.9526 | 5.8188 | 2.24 |
|  |  | 4 | 6.5650 | 5.8093 | 11.51 | 6.4458 | 6.1431 | 4.69 | 6.3864 | 6.2361 | 2.35 |
|  |  | 8 | 6.9384 | 6.2617 | 9.75 | 6.8637 | 6.5958 | 3.90 | 6.8163 | 6.6832 | 1.95 |

Compression: $E_{1 c} / E_{2 c}=25, E_{2 c}=E_{3 c}=1 \mathrm{GPa}, G_{12 c} / E_{2 c}=G_{13 c} / E_{2 c}=0.5, G_{23 c} / E_{2 c}=0.2, v_{12 c}=v_{23 \mathrm{c}}=$ $v_{13 c}=0.25, E_{2 t} / E_{2 c}$ ratio is varied from 0.2 to 2.0.

Boundary conditions considered are:
Simply supported: $u_{0}=w_{0}=\beta_{\mathrm{s}}=0$ at $\theta=0$ and $b / r$ (straight edges), $v_{0}=w_{0}=\beta_{\theta}=0$ at $s=0$ and $L$ (curved edges).

Clamped: $u_{0}=v_{0}=w_{0}=\beta_{\mathrm{s}}=\beta_{\theta}=0$ at straight/curved edges.

Table 3
Non-dimensional positive and negative half cycle frequencies of angle-ply $(\theta /-\theta)_{N / 2}$ bimodular laminated CSCS cylindrical panels (b/h $=10$, Material 1)

| $L / b$ | $\theta$ | $N$ | $r / h=20$ |  |  | $r / h=50$ |  |  | $r / h=100$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\Omega_{1}$ | $\Omega_{2}$ | \% diff | $\Omega_{1}$ | $\Omega_{2}$ | \% diff | $\Omega_{1}$ | $\Omega_{2}$ | \% diff |
| 0.5 | $15^{\circ}$ | 2 | 19.7833 | 20.0019 | $-1.10$ | 19.4858 | 19.5813 | -0.49 | 19.4574 | 19.5059 | -0.24 |
|  |  | 4 | 19.8506 | 20.0819 | -1.16 | 19.5474 | 19.6445 | -0.49 | 19.5184 | 19.5663 | -0.24 |
|  |  | 8 | 19.9798 | 20.4089 | -2.14 | 19.7303 | 19.9065 | -0.89 | 19.7140 | 19.8080 | -0.47 |
|  | $30^{\circ}$ | 2 | 20.6453 | 19.7617 | 4.27 | 20.0114 | 19.6526 | 1.79 | 19.8684 | 19.6883 | 0.90 |
|  |  | 4 | 21.0253 | 20.2232 | 3.81 | 20.3940 | 20.0643 | 1.61 | 20.2563 | 20.0924 | 0.80 |
|  |  | 8 | 21.7045 | 21.1107 | 2.73 | 21.1577 | 20.9134 | 1.15 | 21.0431 | 20.9207 | 0.58 |
|  | $45^{\circ}$ | 2 | 22.8416 | 19.3810 | 15.15 | 21.2680 | 19.8468 | 6.68 | 20.8316 | 20.1214 | 3.40 |
|  |  | 4 | 24.1360 | 20.2880 | 15.94 | 22.4637 | 20.8959 | 6.97 | 21.9939 | 21.2061 | 3.58 |
|  |  | 8 | 25.0394 | 21.3574 | 14.70 | 23.4439 | 21.9593 | 6.33 | 23.0049 | 22.2595 | 3.24 |
| 0.7 | $15^{\circ}$ | 2 | 13.3459 | 13.4247 | -0.59 | 12.8242 | 12.8616 | -0.29 | 12.7542 | 12.7718 | -0.13 |
|  |  | 4 | 13.4742 | 13.5116 | -0.27 | 12.9309 | 12.9481 | $-0.13$ | 12.8525 | 12.8637 | -0.08 |
|  |  | 8 | 13.5964 | 13.7829 | -1.37 | 13.1073 | 13.1860 | $-0.60$ | 13.0424 | 13.0855 | -0.33 |
|  | $30^{\circ}$ | 2 | 14.9052 | 13.5218 | 9.28 | 13.9273 | 13.3445 | 4.18 | 13.6992 | 13.4043 | 2.15 |
|  |  | 4 | 15.4874 | 13.9645 | 9.83 | 14.4612 | 13.8285 | 4.37 | 14.2175 | 13.9013 | 2.22 |
|  |  | 8 | 16.0053 | 14.6227 | 8.63 | 15.0722 | 14.4900 | 3.86 | 14.8521 | 14.5564 | 1.99 |
|  | $45^{\circ}$ | 2 | 18.6618 | 13.5788 | 27.23 | 16.1325 | 13.9933 | 13.26 | 15.4441 | 14.3666 | 6.97 |
|  |  | 4 | 20.3398 | 14.4517 | 28.94 | 17.7142 | 15.2623 | 13.84 | 16.9744 | 15.7400 | 7.27 |
|  |  | 8 | 21.1210 | 15.3579 | 27.28 | 18.5720 | 16.2053 | 12.74 | 17.8524 | 16.6679 | 6.63 |
| 1.0 | $15^{\circ}$ | 2 | 10.0279 | 9.9480 | 0.79 | 9.2649 | 9.2326 | 0.34 | 9.1460 | 9.1307 | 0.16 |
|  |  | 4 | 10.2483 | 10.0424 | 2.00 | 9.4432 | 9.3529 | 0.95 | 9.3078 | 9.2618 | 0.49 |
|  |  | 8 | 10.3867 | 10.2511 | 1.30 | 9.6145 | 9.5618 | 0.54 | 9.4918 | 9.4664 | 0.26 |
|  | $30^{\circ}$ | 2 | 12.2731 | 10.2097 | 16.81 | 10.8581 | 9.9724 | 8.15 | 10.5168 | 10.0687 | 4.26 |
|  |  | 4 | 13.1683 | 10.6354 | 19.23 | 11.6603 | 10.5787 | 9.27 | 11.2786 | 10.7305 | 4.85 |
|  |  | 8 | 13.6584 | 11.1344 | 18.47 | 12.1897 | 11.1174 | 8.79 | 11.8151 | 11.2746 | 4.57 |
|  | $45^{\circ}$ | 2 | 22.2692 | 10.4684 | 52.99 | 15.7691 | 11.0285 | 30.06 | 14.1012 | 11.7415 | 16.73 |
|  |  | 4 | 23.5066 | 11.3320 | 51.79 | 17.3175 | 12.6531 | 26.93 | 15.7744 | 13.4940 | 14.45 |
|  |  | 8 | 23.8879 | 12.1548 | 49.11 | 17.8671 | 13.5323 | 24.26 | 16.4305 | 14.3112 | 12.89 |
| 1.4 | $15^{\circ}$ | 2 | 8.6950 | 8.5102 | 2.12 | 7.7695 | 7.6831 | 1.11 | 7.6145 | 7.5704 | 0.57 |
|  |  | 4 | 9.0400 | 8.5824 | 5.06 | 8.0365 | 7.8276 | 2.59 | 7.8502 | 7.7435 | 1.35 |
|  |  | 8 | 9.1821 | 8.7503 | 4.70 | 8.2078 | 8.0203 | 2.28 | 8.0312 | 7.9367 | 1.17 |
|  | $30^{\circ}$ | 2 | 11.9526 | 8.7741 | 26.59 | 9.8663 | 8.4818 | 14.03 | 9.3421 | 8.6413 | 7.50 |
|  |  | 4 | 13.2295 | 9.2248 | 30.27 | 11.0665 | 9.3306 | 15.68 | 10.4883 | 9.6100 | 8.37 |
|  |  | 8 | 13.7801 | 9.7036 | 29.58 | 11.6521 | 9.9319 | 14.76 | 11.0883 | 10.2232 | 7.80 |
|  | $45^{\circ}$ | 2 | 25.5838 | 9.0474 | 64.63 | 17.6075 | 9.7706 | 44.50 | 14.7007 | 10.8685 | 26.06 |
|  |  | 4 | 27.3083 | 9.8873 | 63.79 | 18.8066 | 11.6778 | 37.90 | 16.1365 | 12.8522 | 20.35 |
|  |  | 8 | 27.9631 | 10.6746 | 61.82 | 19.1484 | 12.5396 | 34.51 | 16.5338 | 13.5989 | 17.75 |
| 2.0 | $15^{\circ}$ | 2 | 8.1419 | 7.8678 | 3.36 | 7.0951 | 6.9654 | 1.82 | 6.9113 | 6.8447 | 0.96 |
|  |  | 4 | $8.6038$ | 7.9276 | 7.85 | 7.4507 | 7.1388 | 4.18 | 7.2228 | 7.0632 | 2.20 |
|  |  | 8 | 8.7208 | 8.0663 | 7.50 | 7.5954 | 7.3093 | 3.76 | 7.3799 | 7.2356 | 1.95 |
|  | $30^{\circ}$ | 2 | 14.7262 | 8.0682 | 45.21 | 10.7041 | 7.8412 | 26.74 | 9.6357 | 8.1944 | 14.95 |
|  |  | 4 | 15.7624 | 8.5891 | 45.50 | 12.0417 | 9.0520 | 24.82 | 11.0574 | 9.5574 | 13.56 |
|  |  | 8 | 16.1768 | 9.1160 | 43.64 | 12.5138 | 9.7131 | 22.38 | 11.5838 | 10.1963 | 11.97 |
|  | $45^{\circ}$ | 2 | - | 8.3255 | - | 18.4006 | 9.0466 | 50.83 | 15.0252 | 10.3588 | 31.05 |
|  |  | 4 | - | 9.0946 | - | 19.5875 | 11.0764 | 43.45 | 16.3297 | 12.4351 | 23.84 |
|  |  | 8 | - | 9.8417 | - | 19.8844 | 11.9267 | 40.01 | 16.6023 | 13.1535 | 20.77 |

The free vibration frequencies corresponding to positive and negative half cycles (Refer Fig. 3) are presented in the non-dimensional form as $\left(\Omega_{1}, \Omega_{2}\right)=\left(\omega_{1}, \omega_{2}\right) b^{2}\left(\rho / E_{2 c} h^{2}\right)^{1 / 2}$ for mode with $(m, n)=(1,1)$. The average frequency $(\omega)$ over the entire cycle is given by: $\omega=2\left(1 / \omega_{1}+1 / \omega_{2}\right)^{-1}$. The formulation and computer program developed are validated against available solutions due to Bert et al. [4] and Bert and Kumar [9]. The results

Table 4
Non-dimensional positive and negative half cycle frequencies for angle-ply $(\theta /-\theta)_{N / 2}$ bimodular laminated SCSC cylindrical panels (b/h $=10$, Material 1)

| $L / b$ | $\theta$ | $N$ | $r / h=20$ |  |  | $r / h=50$ |  |  | $r / h=100$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\Omega_{1}$ | $\Omega_{2}$ | \% diff | $\Omega_{1}$ | $\Omega_{2}$ | \% diff | $\Omega_{1}$ | $\Omega_{2}$ | \% diff |
| 0.5 | $15^{\circ}$ | 2 | 33.0949 | 31.5906 | 4.54 | 32.3058 | 31.7182 | 1.81 | 32.1183 | 31.8208 | 0.92 |
|  |  | 4 | 33.9998 | 32.6040 | 4.10 | 33.2692 | 32.7149 | 1.66 | 33.0872 | 32.8099 | 0.83 |
|  |  | 8 | 34.1620 | 32.9483 | 3.55 | 33.4959 | 33.0143 | 1.43 | 33.3343 | 33.0935 | 0.72 |
|  | $30^{\circ}$ | 2 | 37.8017 | 30.0048 | 20.62 | 33.5793 | 31.0709 | 7.47 | 32.7805 | 31.5618 | 3.71 |
|  |  | 4 | 38.3489 | 31.4845 | 17.89 | 34.1788 | 32.2852 | 5.54 | 33.5590 | 32.6537 | 2.69 |
|  |  | 8 | 38.4109 | 32.0809 | 16.47 | 34.2730 | 32.7278 | 4.50 | 33.7333 | 33.0290 | 2.08 |
|  | $45^{\circ}$ | 2 | 44.7225 | 26.9423 | 39.75 | 34.4209 | 28.9216 | 15.97 | 32.4550 | 29.8906 | 7.90 |
|  |  | 4 | 45.7435 | 29.2530 | 36.04 | 35.2320 | 30.8863 | 12.33 | 33.3878 | 31.6200 | 5.29 |
|  |  | 8 | 46.0565 | 30.2585 | 34.30 | 35.4105 | 31.6421 | 10.64 | 33.5876 | 32.2728 | 3.91 |
| 0.7 | $15^{\circ}$ | 2 | 24.1128 | 22.2904 | 7.55 | 23.1344 | 22.4093 | 3.13 | 22.8912 | 22.5292 | 1.58 |
|  |  | 4 | 25.1353 | 23.3985 | 6.90 | 24.1959 | 23.5028 | 2.86 | 23.9631 | 23.6165 | 1.44 |
|  |  | 8 | 25.3040 | 23.7764 | 6.03 | 24.4313 | 23.8319 | 2.45 | 24.2240 | 23.9248 | 1.23 |
|  | $30^{\circ}$ | 2 | 29.7220 | 20.3383 | 31.57 | 24.7376 | 21.5920 | 12.71 | 23.7302 | 22.1972 | 6.46 |
|  |  | 4 | 30.3944 | 22.1374 | 27.16 | 25.5505 | 23.1061 | 9.56 | 24.7366 | 23.5665 | 4.73 |
|  |  | 8 | 30.5074 | 22.8327 | 25.15 | 25.6735 | 23.6204 | 7.99 | 24.9358 | 23.9937 | 3.77 |
|  | $45^{\circ}$ | 2 | 33.4715 | 17.1650 | 48.71 | 24.5855 | 18.7615 | 23.68 | 22.5145 | 19.7323 | 12.35 |
|  |  | 4 | 33.8296 | 19.2890 | 42.98 | 25.8132 | 21.0313 | 18.52 | 23.9685 | 21.8552 | 8.81 |
|  |  | 8 | 35.0778 | 20.4069 | 41.82 | 26.1918 | 21.9043 | 16.36 | 24.4000 | 22.6104 | 7.33 |
| 1.0 | $15^{\circ}$ | 2 | 17.3835 | 15.3242 | 11.84 | 16.1905 | 15.3685 | 5.07 | 15.9026 | 15.4916 | 2.58 |
|  |  | 4 | 18.4230 | 16.4636 | 10.63 | 17.2971 | 16.5083 | 4.56 | 17.0231 | 16.6267 | 2.32 |
|  |  | 8 | 18.5653 | 16.8541 | 9.21 | 17.5082 | 16.8410 | 3.81 | 17.2661 | 16.9334 | 1.92 |
|  | $30^{\circ}$ | 2 | 22.8606 | 13.2181 | 42.17 | 17.7510 | 14.2420 | 19.76 | 16.6025 | 14.8706 | 10.43 |
|  |  | 4 | 23.7238 | 15.0291 | 36.64 | 18.7857 | 16.0124 | 14.76 | 17.8822 | 16.5297 | 7.56 |
|  |  | 8 | 23.9016 | 15.8122 | 33.84 | 18.9776 | 16.6214 | 12.41 | 18.1351 | 17.0565 | 5.94 |
|  | $45^{\circ}$ | 2 | 20.5665 | 11.1072 | 45.99 | 15.1148 | 11.4989 | 23.92 | 13.7839 | 12.0097 | 12.87 |
|  |  | 4 | 21.6538 | 12.3241 | 43.08 | 16.6124 | 13.2200 | 20.42 | 15.4304 | 13.7979 | 10.57 |
|  |  | 8 | 21.9939 | 13.2288 | 39.85 | 17.1551 | 14.1161 | 17.71 | 16.0841 | 14.6239 | 9.07 |
| 1.4 | $15^{\circ}$ | 2 | 12.8587 | 10.8238 | 15.82 | 11.5231 | 10.6970 | 7.16 | 11.2103 | 10.7931 | 3.72 |
|  |  | 4 | 13.8739 | 11.9045 | 14.19 | 12.6496 | 11.8434 | 6.37 | 12.3548 | 11.9498 | 3.27 |
|  |  | 8 | 14.0011 | 12.2826 | 12.27 | 12.8295 | 12.1670 | 5.16 | 12.5699 | 12.2412 | 2.61 |
|  | $30^{\circ}$ | 2 | 16.6546 | 9.2076 | 44.71 | 12.3541 | 9.4855 | 23.21 | 11.3285 | 9.9062 | 12.55 |
|  |  | 4 | 17.6371 | 10.5482 | 40.19 | 13.6612 | 11.1295 | 18.53 | 12.8093 | 11.5620 | 9.73 |
|  |  | 8 | 17.8494 | 11.3024 | 36.67 | 13.9689 | 11.8017 | 15.51 | 13.1960 | 12.1552 | 7.88 |
|  | $45^{\circ}$ | 2 | 10.3002 | 8.0822 | 21.53 | 8.8380 | 7.9092 | 10.50 | 8.4776 | 8.0108 | 5.50 |
|  |  | 4 | 11.4404 | 8.8089 | 23.00 | 9.9739 | 8.8438 | 11.33 | 9.5849 | 9.0089 | 6.00 |
|  |  | 8 | 11.9242 | 9.4557 | 20.70 | 10.5618 | 9.5346 | 9.72 | 10.2027 | 9.6914 | 5.01 |
| 2.0 | $15^{\circ}$ | 2 | 9.3158 | 7.7821 |  | 8.0143 | 7.3886 |  |  |  |  |
|  |  | 4 | 10.3174 | 8.6288 | 16.36 | 9.1081 | 8.4097 | 7.66 | 8.8287 | 8.4771 | 3.98 |
|  |  | 8 | 10.4464 | 8.9674 | 14.15 | 9.9214 | 8.7255 | 12.05 | 9.0452 | 8.7640 | 3.10 |
|  | $30^{\circ}$ | 2 | 9.3190 | 6.9857 | 25.03 | 7.6402 | 6.6843 | 12.51 | 7.2466 | 6.7639 | 6.66 |
|  |  | 4 | 10.4629 | 7.7902 | 25.54 | 8.8974 | 7.7678 | 12.69 | 8.5035 | 7.9303 | 6.74 |
|  |  | 8 | 10.8002 | 8.3738 | 22.46 | 9.3861 | 8.3887 | 10.62 | 9.0241 | 8.5278 | 5.49 |
|  | $45^{\circ}$ | 2 | 6.5621 | 6.2080 | 5.39 | 6.2145 | 6.0573 | 2.52 | 6.1381 | 6.0588 | 1.29 |
|  |  | 4 | 7.1521 | 6.8149 | 4.71 | 6.7778 | 6.6127 | 2.43 | 6.6907 | 6.6070 | 1.25 |
|  |  | 8 | 7.5187 | 7.3201 | 2.64 | 7.2119 | 7.1406 | 0.98 | 7.1561 | 7.1222 | 0.47 |

for two-layered cross-ply simply supported plate are given in Table 1(a) and for cylindrical panel in Table 1(b). It can be seen from Table 1 that the results for plate and for positive half cycle of $90^{\circ} / 0^{\circ}$ cylindrical panel match very well with the respective available solutions. The results of Ref. [9] for negative half cycle do not match with the present results for $90^{\circ} / 0^{\circ}$ panel rather they match with positive half cycle of $0^{\circ} / 90^{\circ}$ panel. There appears to be a typographical error in Ref. [9].

Table 5
Non-dimensional positive and negative half cycle frequencies of cross-ply $\left(0^{\circ} / 90^{\circ}\right)_{N / 2}$ bimodular laminated SCSC cylindrical panels $(b / h$ $=10$, Material 1)

| $L / b$ | $N$ | $r / h=20$ |  |  | $r / h=50$ |  |  | $r / h=100$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\Omega_{1}$ | $\Omega_{2}$ | \% diff | $\Omega_{1}$ | $\Omega_{2}$ | \% diff | $\Omega_{1}$ | $\Omega_{2}$ | \% diff |
| 0.5 | 2 | 32.7292 | 32.8030 | -0.22 | 32.6753 | 32.7537 | -0.23 | 32.6627 | 32.7533 | -0.27 |
|  | 4 | 33.7172 | 33.6354 | 0.24 | 33.6944 | 33.6314 | 0.18 | 33.6884 | 33.6251 | 0.18 |
|  | 8 | 33.8540 | 33.7666 | 0.25 | 33.8356 | 33.7772 | 0.17 | 33.8304 | 33.7805 | 0.14 |
| 0.7 | 2 | 22.6850 | 22.4821 | 0.89 | 22.6390 | 22.4769 | 0.71 | 22.6282 | 22.4792 | 0.65 |
|  | 4 | 23.9169 | 23.7276 | 0.79 | 23.9072 | 23.7359 | 0.71 | 23.9041 | 23.7419 | 0.67 |
|  | 8 | 24.0998 | 23.9719 | 0.53 | 24.0959 | 23.9838 | 0.46 | 24.0939 | 23.9887 | 0.43 |
| 1.0 | 2 | 15.1100 | 14.6437 | 3.08 | 15.0839 | 14.6465 | 2.89 | 15.0789 | 14.6513 | 2.83 |
|  | 4 | 16.5376 | 16.2317 | 1.84 | 16.5487 | 16.2462 | 1.82 | 16.5508 | 16.2532 | 1.79 |
|  | 8 | 16.7727 | 16.5977 | 1.04 | 16.7904 | 16.6151 | 1.04 | 16.7938 | 16.6200 | 1.03 |
| 1.4 | 2 | 10.2348 | 9.4919 | 7.25 | 10.2432 | 9.4936 | 7.31 | 10.2476 | 9.5005 | 7.29 |
|  | 4 | 11.6582 | 11.2168 | 3.78 | 11.6970 | 11.2352 | 3.94 | 11.7063 | 11.2424 | 3.96 |
|  | 8 | 11.9291 | 11.7022 | 1.90 | 11.9746 | 11.7237 | 2.09 | 11.9851 | 11.7277 | 2.14 |
| 2.0 | 2 | 7.0584 | 5.9548 | 15.63 | 7.1264 | 5.9619 | 16.34 | 7.1457 | 5.9716 | 16.43 |
|  | 4 | 8.1903 | 7.5617 | 7.67 | 8.2710 | 7.5867 | 8.27 | 8.2906 | 7.5937 | 8.40 |
|  | 8 | 8.4573 | 8.1619 | 3.49 | 8.5435 | 8.1896 | 4.14 | 8.5639 | 8.1922 | 4.34 |

Table 6
Non-dimensional positive and negative half cycle frequencies of cross-ply $\left(0^{\circ} / 90^{\circ}\right)_{N / 2}$ bimodular laminated CSCS cylindrical panels $(b / h$ $=10$, Material 1)

| $L / b$ | $N$ | $r / h=50$ |  |  | $r / h=100$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\Omega_{1}$ | $\Omega_{2}$ | \% diff | $\Omega_{1}$ | $\Omega_{2}$ | \% diff |
| 0.5 | 2 | 28.3702 | 20.3145 | 28.39 | 21.7318 | 20.8192 | 4.19 |
|  | 4 | 29.7577 | 21.2174 | 28.69 | 23.4795 | 21.9738 | 6.41 |
|  | 8 | 30.5604 | 21.7471 | 28.83 | 24.5652 | 22.5066 | 8.38 |
| 0.7 | 2 | 27.0713 | 13.9447 | 48.48 | 19.9428 | 15.0097 | 24.72 |
|  | 4 | 27.9146 | 15.3093 | 45.15 | 20.9763 | 16.5632 | 21.03 |
|  | 8 | 28.1803 | 15.9252 | 43.48 | 21.3856 | 17.0980 | 20.04 |
| 1.0 | 2 | 26.6889 | 10.9535 | 58.95 | 19.3765 | 12.4447 | 35.77 |
|  | 4 | 27.3929 | 12.6503 | 53.81 | 20.1813 | 14.2726 | 29.27 |
|  | 8 | 27.4231 | 13.3537 | 51.30 | 20.3093 | 14.8374 | 26.94 |
| 1.4 | 2 | 26.5917 | 9.9014 | 62.76 | 19.2268 | 11.6055 | 39.63 |
|  | 4 | 27.2833 | 11.7605 | 56.89 | 20.0043 | 13.5514 | 32.25 |
|  | 8 | 27.3161 | 12.5130 | 54.19 | 20.0618 | 14.1372 | 29.53 |
| 2.0 | 2 | 26.5775 | 9.4946 | 64.27 | 19.1801 | 11.3026 | 41.07 |
|  | 4 | 27.2568 | 11.4288 | 58.06 | 19.9797 | 13.3010 | 33.42 |
|  | 8 | 27.2775 | 12.2145 | 55.22 | 20.0313 | 13.8960 | 30.62 |


(a)




(b)




(c)

(d)


Fig. 7. Variation of modal fiber direction strain ( $\varepsilon_{11}$ ), stresses $\left(\sigma_{11}, \sigma_{22}, \tau_{12}\right)$ along thickness of angle-ply laminated SCSC panels $(r / h=50$, $b / h=10, L / b=0.5$, Material 1): (a) $30^{\circ} /-30^{\circ}$, positive half cycle, (b) $30^{\circ} /-30^{\circ}$, negative half cycle, (c) $\left(30^{\circ} /-30^{\circ}\right) 4$, positive half cycle and (d) $\left(30^{\circ} /-30^{\circ}\right)_{4}$, negative half cycle.

The convergence of the iterative eigenvalue approach for the determination of free vibration frequencies and mode shapes is highlighted in Fig. 4 for CSCS (clamped at $\theta=0$ and $b / r$, simply supported at $s=0$ and $L$ ) panels $\left(r / h=50, L / b=0.5,15^{\circ} /-15^{\circ}\right)$ and in Fig. 5 for SSSS (all edges simply supported) panels ( $r / h=100$, $\left.L / b=1.0,\left(45^{\circ} /-45^{\circ}\right)_{4}\right)$. The frequency values and corresponding mode shapes for the first five, one intermediate and last two consecutive iterations are presented. It can be inferred from these figures that the rate of convergence is not same for the two cases.
The influence of geometry and lamination scheme on the positive and negative half cycle frequencies of SSSS, CSCS and SCSC bimodular material (Material 1) angle-ply $(\theta /-\theta)_{N / 2}$ laminated panels is investigated. The results are depicted in Tables 2-4 for different thickness ratios $(r / h=20,50,100)$, ply angles $\left(\theta=15^{\circ}\right.$, $30^{\circ}, 45^{\circ}$ ), number of layers ( $N=2,4,8$ ) and aspect ratios ( $L / b=0.5,0.7,1,1.4,2$ ). It can be observed from these tables that positive half cycle frequencies are greater than the corresponding negative half cycle
frequencies for all the cases except for $15^{\circ}$ ply-angle CSCS panels with $L / b=0.5$ and 0.7 . The percentage difference of positive and negative half cycle frequencies $\left(x=100\left(\Omega_{1}-\Omega_{2}\right) / \Omega_{1}\right)$ decreases as $r / h$ increases. The percentage difference $(x)$ increases with the increase in $L / b$ ratio for SSSS panels with ply-angle $\theta=15^{\circ}$ and $30^{\circ}$, for CSCS panels and for $15^{\circ}$ ply-angle case of SCSC panels. For other cases, $x$ first increases and then decreases with increase in aspect ratio $(L / b)$. With increase in ply-angle $(\theta)$, the percentage difference $x$


Fig. 8. Variation of positive and negative half cycle frequencies with $E_{2 t} / E_{2 c}$ of angle-ply panels ( $r / h=20, b / h=10, L / b=1$, Material 2) for different edge conditions: (a) two-layered: $45^{\circ} /-45^{\circ}$ and (b) eight-layered: $\left(45^{\circ} /-45^{\circ}\right)_{4}$.


Fig. 9. Variation of positive and negative half cycle frequencies with $E_{2 t} / E_{2 c}$ of angle-ply panels ( $r / h=100, b / h=10, L / b=1$, Material 2) for different edge conditions: (a) two-layered: $45^{\circ} /-45^{\circ}$ and (b) eight-layered: $\left(45^{\circ} /-45^{\circ}\right)_{4}$.
increases except for $L / b=1.4,2.0 ; \theta=45^{\circ}$ cases of SSSS and SCSC panels. These trends may be attributed to the distribution of fiber direction strain $\left(\varepsilon_{11}\right)$ deciding the tensile/compressive property assignment. In general, the region corresponding to positive $\varepsilon_{11}$ is more for positive half cycle than that for negative half cycle resulting in $\Omega_{1}>\Omega_{2}$.

The positive and negative half cycle frequencies of cross-ply SCSC and CSCS panels are given in Tables 5 and 6 , respectively, for different values of $r / h, L / b$ and number of layers. It can be seen from these tables that


Fig. 10. Variation of positive and negative half cycle frequencies with $E_{2 t} / E_{2 c}$ of cross-ply panels ( $r / h=20, b / h=10, L / b=1$, Material 2) for different edge conditions: (a) two-layered: $0^{\circ} / 90^{\circ}$ and (b) eight-layered: $\left(0^{\circ} / 90^{\circ}\right)_{4}$.


Fig. 11. Variation of positive and negative half cycle frequencies with $E_{2 t} / E_{2 c}$ of cross-ply panels $(r / h=100, b / h=10, L / b=1$, Material 2) for different edge conditions: (a) two-layered: $0^{\circ} / 90^{\circ}$ (b) eight-layered: $\left(0^{\circ} / 90^{\circ}\right)_{4}$.


Fig. 12. Non-dimensional central displacement ( $W$ ) versus time response of eight-layered cross-ply $\left(0^{\circ} / 90^{\circ}\right)_{4}$ laminated SCSC panel $\left(r / h=100, L / b=2.0, b / h=10\right.$, Material $\left.1, \omega_{F} / \omega=1.0, \omega=9376.68 \mathrm{rad} / \mathrm{s}\right)$.


Fig. 13. Frequency response of eight-layered cross-ply $\left(0^{\circ} / 90^{\circ}\right)_{4}$ laminated SCSC panel $(r / h=100, L / b=2.0, b / h=10$, Material 1 , bimodular: $\omega=9376.68 \mathrm{rad} / \mathrm{s}$, unimodular: $\omega=17110.26 \mathrm{rad} / \mathrm{s})$.
$\Omega_{1}$ is greater than the corresponding $\Omega_{2}$ values except for $L / b=0.5$ and $N=2$ in the case of SCSC panels. In general, the percentage difference $x$ increases with increase in $L / b$ and it shows decreasing trend with increase in $r / h$ and number of layers. The modal fiber direction strain $\left(\varepsilon_{11}\right)$ and stresses $\left(\sigma_{11}, \sigma_{22}, \sigma_{12}\right)$ are shown in Fig. 6 for cross-ply and in Fig. 7 for angle-ply SCSC panels for positive and negative half cycles of vibration. It can be seen from these figures that through the thickness distribution of stresses is significantly different for positive and negative half cycles unlike unimodular case wherein the stresses at a particular location in negative half cycle would be of same magnitude but of opposite sign of those corresponding to positive half cycle.

The positive and negative half cycle frequency variation with $E_{2 t} / E_{2 c}$ ratio of Material 2 of two- and eightlayered cross- and angle-ply cylindrical panels with various edge conditions is shown in Figs. 8-11. It is revealed from these figures that as $E_{2 t} / E_{2 c}$ increases, $\Omega_{1}, \Omega_{2}$ values increase. The difference between $\Omega_{1}$ and $\Omega_{2}$ decreases as $E_{2 t} / E_{2 c}$ increases from $E_{2 t} / E_{2 c}=0.2$ to 1.0 and it increases as $E_{2 t} / E_{2 c}$ increases from $E_{2 t} / E_{2 c}=1.0-2.0$. This type of behavior is because as $E_{2 t} / E_{2 c}$ increases (in the range of $E_{2 t} / E_{2 c}<1$ ) the bimodularity ratio ( $E_{2 t} / E_{2 c}$ ) decreases and at $E_{2 t} / E_{2 c}=1$ it becomes unimodular with positive and negative half cycle frequencies being same. If $E_{2 t} / E_{2 c}$ increases (in the range of $E_{2 t} / E_{2 c}>1$ ) the bimodularity ratio
increases and hence the difference increases. For cross-ply SSSS and SCSC panels, the difference between $\Omega_{1}$ and $\Omega_{2}$ is very small as seen from Figs. 10 and 11. The difference between $\Omega_{1}$ and $\Omega_{2}$ is greater for panels with straight edges clamped compared to those with straight edges simply supported.

The effect of bimodularity on the steady state response versus forcing frequency relation is studied for eightlayered cross-ply $\left(0^{\circ} / 90^{\circ}\right)_{4}$ laminated SCSC panel $(r / h=100, L / b=2.0, b / h=10$, Material 1) subjected to uniformly distributed harmonic force: $q=q_{0} \cos \left(\omega_{F} \mathrm{t}\right)$. The forcing frequency is varied in the neighborhood of fundamental free vibration average frequency $(\omega)$. The proportional damping is taken as: $[C]=0.02 \omega[M]$ which corresponds to 0.01 modal damping factor. The typical non-dimensional central displacement $W$ [ $=w_{0}$ $\left.h^{3} E_{2 c}\left(q_{0} L^{4}\right)\right]$ versus time response curve for $\omega_{F} / \omega=1.0$ is shown in Fig. 12. The steady state response (extracted from time history) versus forcing frequency curves for bimodular panel and unimodular panel with tensile properties are shown in Fig. 13. It can be seen from this figure that there is a significant difference in the frequency response of bimodular and unimodular panels.

## 6. Conclusion

The free vibration analysis of bimodular laminated composite cylindrical panels is carried out using finite element method based on first order shear deformation theory and the iterative eigenvalue approach. The forced dynamic response is obtained using Newmark's direct time integration scheme. The parametric study is carried out to investigate the effects of panel geometry, lay-up, ply-angle, boundary conditions and bimodularity ratio on the positive and negative half cycle frequencies. The following conclusions can be drawn:
(i) The significant difference between the frequencies of positive and negative half cycles is found depending on the panel parameters.
(ii) The distribution of modal stresses is quite different for positive and negative half cycles unlike unimodular case wherein the stresses at a particular location in negative half cycle would be of same magnitude but of opposite sign of those corresponding to positive half cycle.
(iii) The percentage difference of positive and negative half cycle frequencies decreases as $r / h$ increases.
(iv) As bimodularity ratio increases the positive and negative half cycle frequencies increase.
(v) The frequency response of bimodular and unimodular panels is significantly different.

## Acknowledgment

Financial support received from Council of Scientific and Industrial Research (CSIR), New Delhi (India) through Grant No. 22(0401)/06/EMR-II is gratefully acknowledged.

## References

[1] J.W. Davis, N.R. Zurkowski, Put the strength and stiffness where you need it, Rept T-STDB (101.05), Reinforced Plastics Division, Minnesota Mining and Manufacturing Company.
[2] Structural Design Guide for Advanced Composite Applications: Material Characterization, vol. 1, second ed., Advanced Composite Division, Air Force Materials Laboratory, 1971.
[3] C.W. Bert, Models for fibrous composites with different properties in tension and compression, Journal of Engineering Materials and Technology—Transactions of the ASME 99H (1977) 344-349.
[4] C.W. Bert, J.N. Reddy, W.C. Chao, V.S. Reddy, Vibration of thick rectangular plates of bimodulus composite material, ASME Journal of Applied Mechanics 48 (1981) 371-376.
[5] J.L. Doong, L.W. Chen, Vibration of a bimodulus thick plate, ASME Journal of Vibration, Acoustics, Stress and Reliability in Design 107 (1985) 92-97.
[6] J.L. Doong, C.P. Fung, Vibration and buckling of bimodulus laminated plates according to a higher order plate theory, Journal of Sound and Vibration 125 (1988) 325-339.
[7] B.P. Patel, S.S. Gupta, R. Sarda, Free flexural vibration behavior of bimodular material angle-ply laminated composite plates, Journal of Sound and Vibration 286 (2005) 167-186.
[8] B.T. Jzeng, P.D. Lin, L.W. Chen, Dynamic stability of bimodulus thick plates, Computers \& Structures 45 (1992) 745-753.
[9] C.W. Bert, M. Kumar, Vibration of cylindrical shells of bimodulus composite material, Journal of Sound and Vibration 81 (1982) 107-121.
[10] H. Kraus, Thin Elastic Shells, Wiley, New York, 1976.
[11] G. Pratap, B.P. Naganarayana, B.R. Somasekhar, Field consistency analysis of the isoparametric eight-noded plate bending element, Computers \& Structures 29 (1988) 857-863.
[12] V.J. Papazoglou, N.G. Tsouvalis, Mechanical behavior of bimodulus laminated plates, Composite Structures 17 (1991) 1-22.


[^0]:    *Corresponding author. Tel.: +9101126591232; fax: +9101126581119.
    E-mail address: badripatel@hotmail.com (B.P. Patel).

